Connect with us

Business

Forget the panic: AI Isn’t Here to Replace Us—It’s Here to Elevate Our Roles

Learn why managing AI agents—not fearing them—is key to thriving in the workforce of tomorrow. Discover how to become an effective AI manager today.

Published

on

AI Manager

TL;DR – What You Need to Know in 30 Seconds About the Rise of the AI Manager

  • AI creates new leadership roles, not job losses.
  • Successful AI managers combine tech knowledge with clear communication.
  • AI boosts productivity, creating more jobs and opportunities.
  • Invest early in AI literacy and critical thinking to thrive.

Professionals who master the art of managing AI agents are set to define the next era of work.

AI is everywhere right now—and so are fears about job displacement. But take a deep breath; there’s good news! Rather than making human skills obsolete, artificial intelligence is actually paving the way for a new, exciting role: the AI manager.

As AI agents evolve into reliable digital teammates capable of handling complex tasks, the spotlight shifts onto the people who manage them. In fact, the most successful professionals of the future won’t just understand how AI works—they’ll know exactly how to lead, direct, and collaborate effectively with their digital colleagues.

AI as High-Performing Team Members

Today’s AI isn’t just impressive—it’s genuinely useful. In the past few years alone, we’ve witnessed remarkable leaps in capabilities, especially with generative AI. These digital teammates are now expertly handling everything from financial analysis and legal research to content creation and data-driven decision-making.

The next big thing is ‘agentic AI’—digital agents that don’t just assist humans but actively work alongside them with a level of independence. Think about it: consistent, reliable, and tireless digital employees who never need a coffee break. Of course, that might make some of us nervous—who wouldn’t worry about a colleague who can work 24/7 at lightning speed?

But here’s the key: even the best talent needs effective management. AI might be powerful, but it still needs direction, oversight, and human judgement. The professionals who thrive won’t be replaced by AI—they’ll manage teams of digital talent to deliver results greater than anything achievable alone.

Advertisement

What Does It Mean to Manage AI?

Being an AI manager doesn’t mean abandoning traditional leadership skills; it means expanding them. Great managers have always needed two core competencies:

  • People management: motivating, inspiring, and guiding human teams. While AI lacks emotions, clear communication and setting precise expectations are still vital.
  • Technical management: structuring workflows, delegating tasks strategically, and ensuring alignment towards organisational goals.

Both skill sets are critical when managing AI. A manager of digital agents must understand the nuances of the technology—its strengths, weaknesses, and quirks—while also working effectively with their human counterparts. Just as a great sales manager might stumble managing engineers without understanding their workflows, managing AI requires hands-on technical knowledge combined with clear strategic vision.

Ultimately, being disconnected from practical realities won’t cut it. Leaders in an AI-driven environment must be equally comfortable engaging with technology as they are with strategy and collaboration.

Re-examining the Job Displacement Myth

Fears around AI’s impact often overlook one important economic principle: Jevons paradox. Simply put, when efficiency improves, overall demand frequently increases too. Yes, AI might automate tasks currently performed by humans—but that same efficiency boost can open doors we can’t yet imagine.

Think of the industrial revolution: automation displaced manual labour, but it simultaneously created unprecedented wealth, innovation, and new kinds of employment. Similarly, AI’s efficiency will likely spawn entirely new markets, industries, and roles—like AI agent managers—ensuring that human creativity and insight remain irreplaceable.

How Can We Prepare for This Shift?

Change can be uncomfortable, and the rise of AI is no exception. But the transition doesn’t have to be painful. Here’s how we can adapt:

Advertisement

1. Prioritise Practical Skills in Education

Universities excel at theory but often overlook practical skills that the workplace demands. It’s time to elevate vocational and professional training, the kind traditionally offered by polytechnics or community colleges, to build job-ready skill sets.

2. Embrace AI Literacy in the Workplace

Companies should embed AI literacy into their core training, ensuring everyone—from new hires to senior executives—is comfortable using and collaborating with AI tools. Businesses that invest early in AI literacy will hold a powerful competitive advantage.

3. Take Personal Responsibility for Learning

Individuals, especially those in roles susceptible to automation, need to proactively upgrade their skillsets. This doesn’t mean everyone should become a developer, but learning to confidently use AI, understand digital workflows, and develop critical thinking around tech are essential.

Crucially, becoming AI-literate doesn’t mean blindly trusting technology; it means being savvy enough to challenge it. An effective AI manager must know when to push back against the recommendations of digital teammates, recognising that AI isn’t perfect—it’s only as good as the people who oversee it.

Luckily, resources to build these skills abound: free online courses, corporate training, AI boot camps, and independent learning opportunities are readily available. Your job is to start learning—and keep asking smart questions.

Advertisement

Are YOU ready?

The future belongs to those who adapt, question, and lead the digital workforce. Are you ready to become an AI manager?

You may also like:

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading
Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Business

Is AI Really Paying Off? CFOs Say ‘Not Yet’

CFOs are struggling with AI monetisation, with many failing to capture its financial value, essential for AI’s success in the boardroom.

Published

on

AI monetisation

TL;DR — What You Need to Know:

  • AI monetisation is a priority: Despite AI’s transformative potential, 71% of CFOs say they’re still struggling to make money from it.
  • Traditional pricing is outdated: 68% of tech firms find their legacy pricing models don’t work for AI-driven economies.
  • Boardrooms are getting serious: AI monetisation is now a formal boardroom priority, but the tools to track usage and profitability remain limited.

Global Bean Counters are Struggling to Unlock AI Monetisation, and That’s a Huge Issue

AI is being hailed as the next big thing in business transformation, yet many companies are still struggling to capture its financial value.

A new global study of 614 CFOs conducted by DigitalRoute reveals that nearly three-quarters (71%) of these executives say they are struggling to monetise AI effectively, despite nearly 90% naming it a mission-critical priority for the next five years.

But here’s the kicker: only 29% of companies have a working AI monetisation model. The rest? They’re either experimenting or flying blind.

So, what’s the hold-up? Well, it’s clear: traditional pricing strategies just don’t fit the bill in an AI-driven economy. Over two-thirds (68%) of tech firms say their legacy pricing models are no longer applicable when it comes to AI. And even though AI has moved to the boardroom’s priority list — 64% of CFOs say it’s now a formal focus — many are still unable to track individual AI consumption, making accurate billing, forecasting, and margin analysis a serious challenge.

The concept of an AI “second digital gold rush” has been floating around, with experts like Ari Vanttinen, CMO at DigitalRoute, pointing out that companies are gambling with pricing and profitability without real-time metering and revenue management systems.

This is where the real opportunities lie. Vanttinen’s insight?

Advertisement
“Every prompt is now a revenue event.”
Ari Vanttinen, CMO at DigitalRoute
Tweet

So, businesses that can meter AI consumption at the feature level and align their finance and product teams around shared data will unlock the margins the market expects.

Regional differences are also apparent in the study. Nordic countries are leading in AI implementation but are struggling with profitability. Meanwhile, France and the UK are showing stronger early commercial returns. The US, while leading in AI development, is more cautious when it comes to monetisation at the organisational level.

Here’s the key takeaway for CFOs: AI is a long-term play, but to scale successfully, businesses need to align their product, finance, and revenue teams around usage-based pricing, invest in new revenue management infrastructure, and begin tracking consumption at the feature level from day one.

The clock is ticking — CFOs need to stop treating AI as a cost line and start seeing it as a genuine profit engine.

So, what’s holding your company back from capturing AI’s full value?

You may also like:

Advertisement

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Business

Anthropic’s CEO Just Said the Quiet Part Out Loud — We Don’t Understand How AI Works

Anthropic’s CEO admits we don’t fully understand how AI works — and he wants to build an “MRI for AI” to change that. Here’s what it means for the future of artificial intelligence.

Published

on

how AI works

TL;DR — What You Need to Know

  • Anthropic CEO Dario Amodei says AI’s decision-making is still largely a mystery — even to the people building it.
  • His new goal? Create an “MRI for AI” to decode what’s going on inside these models.
  • The admission marks a rare moment of transparency from a major AI lab about the risks of unchecked progress.

Does Anyone Really Know How AI Works?

It’s not often that the head of one of the most important AI companies on the planet openly admits… they don’t know how their technology works. But that’s exactly what Dario Amodei — CEO of Anthropic and former VP of research at OpenAI — just did in a candid and quietly explosive essay.

In it, Amodei lays out the truth: when an AI model makes decisions — say, summarising a financial report or answering a question — we genuinely don’t know why it picks one word over another, or how it decides which facts to include. It’s not that no one’s asking. It’s that no one has cracked it yet.

“This lack of understanding”, he writes, “is essentially unprecedented in the history of technology.”
Dario Amodei, CEO of Anthropic
Tweet

Unprecedented and kind of terrifying.

To address it, Amodei has a plan: build a metaphorical “MRI machine” for AI. A way to see what’s happening inside the model as it makes decisions — and ideally, stop anything dangerous before it spirals out of control. Think of it as an AI brain scanner, minus the wires and with a lot more math.

Anthropic’s interest in this isn’t new. The company was born in rebellion — founded in 2021 after Amodei and his sister Daniela left OpenAI over concerns that safety was taking a backseat to profit. Since then, they’ve been championing a more responsible path forward, one that includes not just steering the development of AI but decoding its mysterious inner workings.

Advertisement

In fact, Anthropic recently ran an internal “red team” challenge — planting a fault in a model and asking others to uncover it. Some teams succeeded, and crucially, some did so using early interpretability tools. That might sound dry, but it’s the AI equivalent of a spy thriller: sabotage, detection, and decoding a black box.

Amodei is clearly betting that the race to smarter AI needs to be matched with a race to understand it — before it gets too far ahead of us. And with artificial general intelligence (AGI) looming on the horizon, this isn’t just a research challenge. It’s a moral one.

Because if powerful AI is going to help shape society, steer economies, and redefine the workplace, shouldn’t we at least understand the thing before we let it drive?

What happens when we unleash tools we barely understand into a world that’s not ready for them?

You may also like:

Advertisement

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Business

Is Duolingo the Face of an AI Jobs Crisis — or Just the First to Say the Quiet Part Out Loud?

Duolingo’s AI-first shift may signal the start of an AI jobs crisis — where companies quietly cut creative and entry-level roles in favour of automation.

Published

on

AI jobs crisis

TL;DR — What You Need to Know

  • Duolingo is cutting contractors and ramping up AI use, shifting towards an “AI-first” strategy.
  • Journalists link this to a broader, creeping jobs crisis in creative and entry-level industries.
  • It’s not robots replacing workers — it’s leadership decisions driven by cost-cutting and control.

Are We at the Brink of an AI Jobs Crisis

AI isn’t stealing jobs — companies are handing them over. Duolingo’s latest move might be the canary in the creative workforce coal mine.

Here’s the thing: we’ve all been bracing for some kind of AI-led workforce disruption — but few expected it to quietly begin with language learning and grammar correction.

This week, Duolingo officially declared itself an “AI-first” company, announcing plans to replace contractors with automation. But according to journalist Brian Merchant, the switch has been happening behind the scenes for a while now. First, it was the translators. Then the writers. Now, more roles are quietly dissolving into lines of code.

What’s most unsettling isn’t just the layoffs — it’s what this move represents. Merchant, writing in his newsletter Blood in the Machine, argues that we’re not watching some dramatic sci-fi robot uprising. We’re watching spreadsheet-era decision-making, dressed up in futuristic language. It’s not AI taking jobs. It’s leaders choosing not to hire people in the first place.

Advertisement

In fact, The Atlantic recently reported a spike in unemployment among recent college grads. Entry-level white collar roles, which were once stepping stones into careers, are either vanishing or being passed over in favour of AI tools. And let’s be honest — if you’re an exec balancing budgets and juggling board pressure, skipping a salary for a subscription might sound pretty tempting.

But there’s a bigger story here. The AI jobs crisis isn’t a single event. It’s a slow burn. A thousand small shifts — fewer freelance briefs, fewer junior hires, fewer hands on deck in creative industries — that are starting to add up.

As Merchant puts it:

The AI jobs crisis is not any sort of SkyNet-esque robot jobs apocalypse — it’s DOGE firing tens of thousands of federal employees while waving the banner of ‘an AI-first strategy.’” That stings. But it also feels… real.
Brian Merchant, Journalist
Tweet

So now we have to ask: if companies like Duolingo are laying the groundwork for an AI-powered future, who exactly is being left behind?

Are we ready to admit that the AI jobs crisis isn’t coming — it’s already here?

You may also like:

Advertisement

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending

Discover more from AIinASIA

Subscribe now to keep reading and get access to the full archive.

Continue reading