Connect with us

Business

Unleashing AI: 5 Practical Ways Entrepreneurs Can Add AI to Their Toolkit Today

Unleashing AI: 5 Practical Ways Entrepreneurs Can Add AI to Their Toolkit Today

Published

on

AI for small businesses

TL;DR:

  • AI is leveling the playing field for small businesses, allowing them to compete with large corporations.
  • Implementing AI-powered tools can automate tasks, provide 24/7 customer support, enhance customer experience, track performance, and scale operations.
  • Small businesses can leverage AI to work smarter and unlock new growth opportunities.

In today’s fast-paced world, technology is rapidly evolving and changing the way we live our lives. Artificial intelligence (AI) stands out as one of the most transformative technologies of the century. The application is practically endless. It’s an exciting time to be an entrepreneur or running a small business. For the first time, AI is leveling the playing field, allowing small companies to compete with large conglomerates.

Embracing new technologies can be a scary and intimidating risk. Fortunately, there are some practical ways that small business owners can start adding AI to their toolkit today.

Automate Repetitive Tasks

One of the most immediate benefits AI brings to small businesses is the ability to automate time-consuming, repetitive, and routine tasks. Entrepreneurs often wear many hats as they juggle both the operational and administrative duties of their company. Tasks such as data entry, appointment scheduling, and invoicing can take valuable time away from making sales and growing the business. In addition, automating processes can help reduce the risk of costly mistakes and human error. AI tools can be leveraged to accurately update customer records, generate reports, and process invoicing to reduce costs.

Entrepreneurs should start by examining the software they currently use. Most major technology companies are investing in adding AI features to their tools. Implementing AI may be as simple as learning to use the AI capabilities already available to you and your team. You can also implement new AI-powered tools like Zapier to help streamline tasks by various apps and automating workflows.

Provide 24/7 Customer Support

For many small businesses, providing consistent and reliable customer support is challenging due to limited resources. This is especially difficult in a time when consumers are accustomed to instant gratification. When potential customers can’t reach a business outside of their operating hours, they will usually move on to a competitor. AI-powered chatbots can be programmed to handle a wide range of inquiries, including answering frequent product questions, guiding them through the sales process, resolving issues, or directing customers to useful resources.

Advertisement

Tools like chatbots can be added to websites to help the business transition to providing round-the-clock customer support. Even during regular business hours, chatbots can also reduce the strain on the team or help with unexpected increases in customer inquiries. These types of communication tools can help improve customer satisfaction and avoid missed sales opportunities, regardless of time zone or staff availability.

Enhance Customer Experience with Personalized Marketing

Personalization has become one of the key drivers in customer satisfaction and loyalty. Consumers today crave unique and personalized experiences. Manually personalizing marketing messages, offers, and product recommendations can be a tedious process for small businesses. AI makes this easy by analyzing large amounts of customer data and tailoring marketing campaigns to the needs of the specific user.

Platforms like HubSpot and Google Analytics are a great place to start when looking to track and understand user behavior. Other AI tools can then be used to create personalized customer journeys that improve the ability to close sales and improve the customer’s experience. The best part for an entrepreneur is that this can be accomplished without a large marketing budget.

Performance Tracking and Decision Making

Entrepreneurs often have to make important decisions that can impact the future of their business, such as deciding on a new product, expanding into new markets, or implementing a different operating model. Good quality data and insights are critical to making great decisions. AI can act as an entrepreneur’s personal team of analysts combing through data to spot patterns or anomalies that could be useful for the business.

In addition to helping drive decision-making, data visualization tools such as Tableau and Power BI can turn this data into useful metrics and key performance indicators. This can provide valuable insights into whether the company is operating effectively.

Advertisement

Scaling Your Business

As a business grows, managing operations can become quite complex. Statistically speaking, the vast majority of growing businesses (92%) struggle to scale up their operations. This is a huge challenge for small businesses that have limited resources to facilitate this expansion. By implementing AI tools, small businesses can proactively design processes and tools that are designed to handle a larger volume of customers. This ensures that the business operations won’t be impacted if the business experiences an unexpected wave of sales and needs to ramp up quickly.

AI is no longer a tool reserved for large corporations. Entrepreneurs and small business owners now have access to powerful AI technologies that can help them work smarter, instead of harder. Whether it’s automating routine tasks, enhancing customer support, or scaling operations, adding AI to your business toolkit can provide the agility and efficiency needed to thrive in a competitive market. As AI continues to evolve, small businesses that embrace these technologies will not only level the playing field but also unlock new growth opportunities that were once out of reach.

Comment and Share:

What AI tools have you implemented in your business, and how have they helped you grow? We’d love to hear your experiences and insights. Share your thoughts in the comments below and subscribe for updates on AI and AGI developments.

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Business

Where Can Generative AI Be Used to Drive Strategic Growth?

GenAI strategic growth is driving significant investments and diverse use cases across Asia’s business landscape.

Published

on

GenAI strategic growth

TL;DR

  • Investment in GenAI is increasing, with nearly half of surveyed organisations planning to spend over $1 million.
  • Challenges include resource shortages, knowledge gaps, and IT constraints.
  • GenAI use cases are expanding across traditional and non-traditional business functions.

Generative AI: The Engine Driving Strategic Growth in Asia

As Generative AI (GenAI) evolves from a technological novelty to a core business driver, organisations across Asia are ramping up investments to capitalise on its transformative potential. A recent survey by Dataiku and Databricks, summarised in the report “AI, Today: Insights From 400 Senior AI Professionals on Generative AI, ROI, Use Cases, and More”, sheds light on how leaders are leveraging GenAI to navigate challenges, unlock new use cases, and drive measurable returns. Read the full report here.

A Strategic Commitment

Investment in GenAI is skyrocketing, with nearly half of the surveyed organisations planning to spend over $1 million on GenAI initiatives in the next year. This financial commitment signals a decisive move beyond experimentation toward strategic integration. With 90% of respondents already allocating funds—either from dedicated budgets (33%) or integrated into broader IT and data science allocations (57%)—GenAI is becoming an indispensable part of enterprise strategy.

However, only 38% of organisations have a dedicated GenAI budget. This indicates that while enthusiasm for GenAI is high, it often competes with other priorities within broader operational budgets.

Realising ROI Amidst Persistent Barriers

While 65% of organisations with GenAI in production report positive ROI, others struggle to achieve or quantify value effectively. Key challenges include:

  • Resource Shortages: 44% lack internal or external resources to deploy advanced GenAI models.
  • Knowledge Gaps: 28% of employees lack understanding of how to effectively utilise GenAI.
  • IT Constraints: 22% face policy or infrastructure limitations, impeding GenAI adoption.

Cost remains a consistent concern, with unclear business cases ranking as a major barrier. For organisations aiming to justify investments, robust ROI measurement frameworks and employee upskilling programs are essential.

Expanding Use Cases: GenAI’s Versatility

One of GenAI’s defining strengths is its adaptability across business functions:

Advertisement
  • Traditional Use Cases: Finance and operations lead in leveraging predictive analytics and automation.
  • Non-Traditional Departments: HR and legal are exploring GenAI for recruitment, compliance automation, and contract management.
  • Emerging Applications: Marketing teams use GenAI for personalised content creation, while R&D integrates it for simulation and prototyping.

The flexibility of GenAI is especially relevant in Asia, where diverse industries face unique challenges that GenAI can address.

AI Techniques Powering Transformation

The survey highlights key AI techniques that organisations are actively using:

  • Predictive Analytics (90%) and Forecasting (83%) dominate in deployment.
  • Large Language Models (LLMs) and Natural Language Processing (NLP) are widely adopted for understanding and generating human-like text.
  • Reinforcement Learning and Federated Machine Learning are gaining traction, enabling advanced decision-making and secure data collaboration.

AI Pioneers: Setting the Standard

The survey identifies “AI Pioneers”—organisations that excel in AI adoption by combining advanced frameworks, ROI measurement, and significant investments:

  • 54% of pioneers plan to spend over $1 million on GenAI, compared to 35% of their peers.
  • Pioneers report higher confidence in leadership understanding of AI risks and benefits, with 69% achieving positive ROI from GenAI use cases.

These organisations often operate under mature models, such as the “Hub & Spoke” or “Embedded” structures, which facilitate cross-department collaboration and innovation.

Shifting Sentiments Around AI

Fears surrounding AI have become less polarised:

  • Only 4% of respondents are “more worried than excited” about AI, down from 10% last year.
  • Confidence in leadership understanding of AI risks and benefits rose by 12% year-over-year, reaching 56%.

This shift suggests that organisations are adopting balanced and pragmatic approaches to integrating AI into their operations.

The Path Forward for Asia-Pacific

Asia-Pacific businesses, known for their tech-forward mindset, are uniquely positioned to harness GenAI. However, success will depend on addressing key challenges:

  1. Building Knowledge: Invest in employee training to bridge knowledge gaps and empower teams.
  2. Strengthening IT Infrastructure: Simplify systems to align with GenAI’s demands.
  3. Quantifying ROI: Implement frameworks to measure returns, ensuring GenAI investments deliver clear business value.

Conclusion

The Dataiku and Databricks report demonstrates that GenAI is not only reshaping industries but also redefining organisational priorities. For Asia-Pacific, the opportunity is clear: lead the charge by embedding GenAI into core strategies, leveraging it across diverse functions, and overcoming barriers with strategic investments in talent and technology.

By doing so, organisations can unlock measurable returns and maintain a competitive edge in the global AI landscape. For an in-depth dive into the findings, access the full report here.

Join the Conversation

Interested in how Generative AI can drive strategic growth for your organisation? Share your thoughts and experiences with GenAI integration, challenges, and successes.

Advertisement

Don’t forget to comment below and share!

You may also like:

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Business

The Race is On: AI Gets Real, Slow and Steady Wins the Race

AI adoption is progressing cautiously across various sectors, with companies prioritising careful deliberation over rapid transformation.

Published

on

AI adoption

TL/DR:

  • AI adoption is progressing cautiously across various sectors, with companies prioritising careful deliberation over rapid transformation.
  • Industries like healthcare and legal services are facing challenges in integrating AI due to inconsistencies and the need for human oversight.
  • The tech and visual design sectors are seeing significant AI integration, with predictions of AI handling up to 80% of coding tasks by next year.

In the wake of ChatGPT’s dramatic arrival two years ago, companies are excited about generative AI’s possibilities but heading into 2025 with careful deliberation rather than rushing to transform their operations. The Channel Tunnel, one of the world’s most strained travel checkpoints, presents a compelling example of AI’s current limitations and practical applications.

Each day, 400 of the world’s largest locomotives cross the tunnel linking France and Britain, with nearly 11 million rail passengers and 2 million cars carried through annually. For GetLink, the company managing the 800-meter-long trains, caution around AI implementation remains paramount.

“We’re in a highly regulated business. We’re not kidding around. These are very strict procedures.”
Denis Coutrot, GetLink’s Chief Data and AI officer
Tweet

Rather than controlling train operations, their AI primarily handles more mundane tasks like searching through rules and regulations. The legal sector, initially viewed as prime for AI disruption, tells a similar story.

“ChatGPT is obviously incredible. But it’s really quite hard to apply it in your day-to-day workflows in a way that is impactful,” noted James Sutton, founder and CEO of Avantia Law.
Denis Coutrot, GetLink’s Chief Data and AI officer
Tweet

While AI excels at basic tasks like searching legal databases and generating simple summaries, more complex work requires careful human oversight.

Sutton explained that AI’s inconsistency remains a challenge:

“One contract I can put in and the AI kicks it out perfectly. Another one will be 40 percent right. That lack of certainty means lawyers still have to verify everything.”

The tech industry presents a more aggressive adoption curve. Google reports that 25 percent of its coding is now handled by generative AI. JetBrains CEO Kirill Skrygan predicts that by next year, AI will handle about 75-80 percent of all coding tasks.

“Developers are using AI as assistants to generate code, and these numbers are growing every day,” said Skrygan at the Web Summit in Lisbon. “The next level is coding agents that can resolve entire tasks usually assigned to developers.”
Kirill Skrygan, CEO JetBrains
Tweet

He suggested that over time, these agents could replace virtually all of the world’s millions of developers. Visual design industries, particularly fashion, are seeing significant impact from AI image generators like DALL-E, Midjourney, and Stable Diffusion. These tools are already transforming work habits and shortening time-to-market for new collections.

In healthcare, despite a study showing AI’s potential —including one where ChatGPT outperformed human doctors in diagnosis from case histories — practitioners remain hesitant to fully embrace the technology.

“They didn’t listen to AI when AI told them things they didn’t agree with,” Dr. Adam Rodman, who carried out the study, told the New York Times.

Companies face a complex calculation between innovation, prudence and how much they are willing to spend.

“It will take some time for the market to sort out all of these costs and benefits, especially in an environment where companies are already feeling hesitation around technology investments.”
Seth Robinson, VP for industry research at CompTIA.
Tweet

Anant Bhardwaj, CEO of Instabase, believed that AI’s limitations were real but temporary.

“The real new innovation, like new physics or new ways of space exploration, those are still beyond the reach of AI… If people think that AI can solve every single human problem, the answer today is ‘No.’”
Anant Bhardwaj, CEO of Instabase
Tweet

While AI excels at processing existing patterns and data, Bhardwaj argued it lacks the human curiosity needed to explore truly new frontiers. But he predicted that within the next decade, most industries will have some form of AI-driven operations, with humans in the backseat, but complete AI autonomy remains distant. Still, the disruption caused by AI is coming hard and fast, and countries must be prepared.

“White collar process work is hugely impacted, that’s already happening. Call centers is already happening,” Professor Susan Athey of Stanford University told a statistics conference at the IMF.
Professor Susan Athey of Stanford University
Tweet

Athey, an economist of the tech industry, expressed worry about regions where a core profession such as call centers risked being swept away by AI.

“Those are ones I would really watch very carefully. Any country that specialises in call centers, I’m very concerned about that country,” she said.
Professor Susan Athey of Stanford University
Tweet

The Cautious Approach to AI Adoption

  • Regulated Industries: Sectors like transportation and legal services are adopting AI cautiously, focusing on mundane tasks while ensuring strict regulatory compliance.
  • Tech Industry: The tech sector is more aggressive in AI adoption, with predictions of AI handling up to 80% of coding tasks by next year.
  • Visual Design: AI image generators are transforming the fashion industry, shortening time-to-market for new collections.

AI in Healthcare: Potential and Challenges

  • Diagnostic Capabilities: AI has shown potential in healthcare, outperforming human doctors in some diagnostic tasks.
  • Hesitancy: Practitioners remain hesitant to fully embrace AI due to inconsistencies and the need for human oversight.
  • Future Prospects: While AI’s limitations are real, its impact on healthcare is expected to grow, albeit slowly.

The Economic Impact of AI

  • White Collar Jobs: AI is significantly impacting white collar process work, including call centers.
  • Economic Concerns: Countries specialising in call centers are at risk of being swept away by AI, raising economic concerns.
  • Preparedness: Nations must be prepared for the disruption caused by AI, ensuring economic stability and job security.

Looking Ahead: The Future of AI

  • Industry Integration: Within the next decade, most industries will have some form of AI-driven operations.
  • Human Oversight: Complete AI autonomy remains distant, with humans still needed for oversight and decision-making.
  • Innovation: AI’s limitations in exploring new frontiers highlight the need for human curiosity and innovation.

As we navigate the exciting yet complex landscape of AI, it is crucial for us to approach its adoption with caution and deliberation. While AI offers immense potential, it also presents challenges that require careful consideration. Our cautious approach ensures that we maintain regulatory compliance, address inconsistencies, and prioritise human oversight. This balanced strategy will enable us to harness AI’s benefits while mitigating risks, paving the way for a sustainable and innovative future.

Join the Conversation:

How is your industry adapting to the rise of AI and AGI? We’d love to hear your experiences and thoughts on the future of these technologies. Don’t forget to subscribe for updates on AI and AGI developments and share your insights in the comments below.

Advertisement

You may also like:

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Business

Amazon’s Nova Set to Revolutionise AI in Asia?

Amazon’s Nova AI models are set to revolutionise the AI landscape in Asia with their multimodal generative capabilities.

Published

on

Nova AI models

TL;DR:

  • Amazon Web Services (AWS) has launched Nova, a family of multimodal generative AI models, including text, image, and video generation capabilities.
  • Nova models are optimised for speed, cost, and accuracy, with context windows supporting up to 2 million tokens by early 2025.
  • AWS is planning to release speech-to-speech and any-to-any models in 2025, expanding Nova’s capabilities.

Amazon Web Services (AWS) has today made a groundbreaking announcement that may just revolutionise the industry

At its re:Invent conference, AWS unveiled Nova, a new family of multimodal generative AI models that promise to push the boundaries of what is possible with AI. This article delves into the capabilities of Nova, its potential impact on the AI landscape in Asia, and what the future holds for this innovative technology.

The Nova Family: A Comprehensive Suite of AI Models

The Nova family comprises four text-generating models—Micro, Lite, Pro, and Premier—each designed to cater to different needs and capabilities. Additionally, Nova Canvas and Nova Reel are dedicated to image and video generation, respectively.

Text-Generating Models: Micro, Lite, Pro, and Premier

  • Micro: Optimised for speed, Micro can process and generate text with the lowest latency, making it ideal for quick responses.
  • Lite: Capable of handling image, video, and text inputs, Lite offers a balanced mix of speed and versatility.
  • Pro: Provides a balanced combination of accuracy, speed, and cost, suitable for a range of tasks.
  • Premier: The most capable model, designed for complex workloads and creating tuned custom models.
“We’ve continued to work on our own frontier models,” Jassy said, “and those frontier models have made a tremendous amount of progress over the last four to five months. And we figured, if we were finding value out of them, you would probably find value out of them.”
Andy Jassy, CEO, Amazon
Tweet

Image and Video Generation: Canvas and Reel

  • Canvas: Allows users to generate and edit images using prompts, with controls for colour schemes and layouts.
  • Reel: Creates videos up to six seconds in length from prompts or reference images, with adjustable camera motion for pans, rotations, and zoom.
“[We’re trying] to limit the generation of harmful content,” he said.
Andy Jassy, CEO, Amazon
Tweet

Capabilities and Safeguards

Nova models are optimised for 15 languages, with a primary focus on English. They offer varying context windows, with Micro supporting up to 100,000 words and Lite and Pro supporting around 225,000 words. By early 2025, certain Nova models will expand to support over 2 million tokens, enhancing their processing capabilities.

AWS has implemented safeguards to ensure responsible use, including watermarking and content moderation. These measures aim to combat misinformation and harmful content generation.

Future Developments

AWS is already looking ahead, with plans to release a speech-to-speech model in Q1 2025 and an any-to-any model by mid-2025. These models will further expand Nova’s capabilities, enabling it to interpret verbal and nonverbal cues and deliver natural, human-like voices.

“You’ll be able to input text, speech, images, or video and output text, speech, images, or video,” Jassy said of the any-to-any model. “This is the future of how frontier models are going to be built and consumed.”
Andy Jassy, CEO, Amazon
Tweet

Wrapping Up: The Future of AI in Asia

The launch of Nova marks a significant milestone in the AI landscape, particularly in Asia. With its multimodal capabilities and focus on responsible use, Nova is poised to revolutionise industries ranging from content creation to data analysis. As AWS continues to innovate, the future of AI in Asia looks brighter than ever.

Join the Conversation

What excites you the most about Amazon’s Nova models? How do you envision these technologies shaping the future of AI in Asia? Share your thoughts and experiences with AI technologies in the comments below. Don’t forget to subscribe for updates on AI and AGI developments here. We’d love to hear your insights and continue the conversation!

Advertisement

You may also like:

Author


Discover more from AIinASIA

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending

Discover more from AIinASIA

Subscribe now to keep reading and get access to the full archive.

Continue reading